Affiliation:
1. From the Department of Microbiology and Molecular Genetics, University of California, Los Angeles, California 90095-1489
Abstract
Recent evidence indicates that chronic autoimmune disease can result from breakdown of regulation and subsequent activation of self-reactive T cells. In many murine autoimmune disease systems and in the Lewis rat, antigen-specific T cells utilizing the T cell receptor (TCR) Vβ8.2 gene segment play a major role. In the myelin basic protein–induced experimental autoimmune encephalomyelitis (EAE) model in H-2u mice, we had shown that T cells recognizing a peptide determinant within the framework 3 region of the Vβ8.2 chain have a critical role in influencing the course of the disease. Here, we report experiments in another disease system, collagen II (CII)–induced arthritis (CIA) in DBA/1LacJ (H-2q) mice, indicating a remarkably parallel control circuit to that found for EAE. A critical role is played by CII-specific Vβ8.2bearing T cells in the CIA system, which we have confirmed. Animals treated with the superantigen SEB before CII administration are significantly protected from CIA. Next, we tested the ability of peptides encompassing the entire Vβ8.2 chain to induce proliferative responses. Only TCR peptide B5 (amino acids 76–101), a regulatory peptide in EAE, induced proliferation. B5 was then used to vaccinate DBA/1LacJ mice and was shown to reduce greatly the severity and incidence of CIA as measured by joint inflammation or histology. Furthermore, similar protection was found when B5 was administered after CII immunization. It was shown that there is physiological induction of a proliferative response to B5 during CIA and that the determinant within B5 is produced from a single chain TCR construct containing the entire Vβ8.2 chain. Finally, the regulation of CIA is discussed in the context of other experimental autoimmune diseases, especially EAE, with emphasis on what appear to be strikingly common mechanisms.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献