Expression of a Dominant Negative Mutant of Interleukin-1β Converting Enzyme in Transgenic Mice Prevents Neuronal Cell Death Induced by Trophic Factor Withdrawal and Ischemic Brain Injury

Author:

Friedlander Robert M.11,Gagliardini Valeria1,Hara Hideaki1,Fink Klaus B.1,Li Weiwei1,MacDonald Glen1,Fishman Mark C.1,Greenberg Arnold H.1,Moskowitz Michael A.1,Yuan Junying1

Affiliation:

1. From the Cardiovascular Research Center, Department of Medicine, Neurosurgical Service, Department of Surgery, and Stroke and Neurovascular Regulation, Neurosurgical Service, Department of Surgery, and Neurology Department, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129; and the Manitoba Institute of Cell Biology, Manitoba Cancer Treatment and Research Fo

Abstract

To explore the role of the interleukin (IL)-1β converting enzyme (ICE) in neuronal apoptosis, we designed a mutant ICE gene (C285G) that acts as a dominant negative ICE inhibitor. Microinjection of the mutant ICE gene into embryonal chicken dorsal root ganglial neurons inhibits trophic factor withdrawal–induced apoptosis. Transgenic mice expressing the fused mutant ICE-lacZ gene under the control of the neuron specific enolase promoter appeared neurologically normal. These mice are deficient in processing pro–IL-1β, indicating that mutant ICEC285G blocks ICE function. Dorsal root ganglial neurons isolated from transgenic mice were resistant to trophic factor withdrawal–induced apoptosis. In addition, the neurons isolated from newborn ICE knockout mice are similarly resistant to trophic factor withdrawal–induced apoptosis. After permanent focal ischemia by middle cerebral artery occlusion, the mutant ICEC285G transgenic mice show significantly reduced brain injury as well as less behavioral deficits when compared to the wild-type controls. Since ICE is the only enzyme with IL-1β convertase activity in mice, our data indicates that the mutant ICEC285G inhibits ICE, and hence mature IL-1β production, and through this mechanism, at least in part, inhibits apoptosis. Our data suggest that genetic manipulation using ICE family dominant negative inhibitors can ameliorate the extent of ischemia-induced brain injury and preserve neurological function.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3