STRUCTURE AND DEVELOPMENT OF VIRUSES OBSERVED IN THE ELECTRON MICROSCOPE

Author:

Morgan Councilman1,Ellison Solon A.1,Rose Harry M.1,Moore Dan H.1

Affiliation:

1. From the Departments of Microbiology and of Medicine, College of Physicians and Surgeons, Columbia University, New York

Abstract

Vaccinia and fowl pox viruses were visualized by the electron microscope in sections of infected chorioallantoic membrane of chicken embryos. The viruses were of similar structure and size, averaging 200 x 300 mµ with considerable individual variation. Intracytoplasmic viral particles contained a dense, nucleus-like body (nucleoid) separated from granular material (viroplasm) by a zone of lesser density. They were enclosed by a single membrane. Near the surface of the host cell and in the extracellular space the particles consisted of a central body of variable shape and density enclosed by a double membrane. The initial sites of development were confined to the cytoplasm of the host cell. Before release from the host cell the viral nucleoids appeared to enlarge and to occupy a central position within the particle, which became enclosed by a double limiting membrane. The brick-shaped forms found after removal of the embedding plastic from thick sections indicated that drying caused characteristic distortion of certain viral particles.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Highs and Lows in Calicivirus Reverse Genetics;Viruses;2024-05-28

2. Recent advances on human mpox;New Microbes and New Infections;2023-01

3. Poxvirus under the eyes of electron microscope;Applied Microscopy;2022-11-14

4. General Information About Viruses;Studies to Combat COVID-19 using Science and Engineering;2022

5. Influenza A virus ribonucleoproteins form liquid organelles at endoplasmic reticulum exit sites;Nature Communications;2019-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3