Affiliation:
1. From LeukoSite, Inc., Cambridge, Massachusetts 02142; the Aaron Diamond AIDS Research Center, The Rockefeller University, New York 10016; and IRIBHN, Universite Libre de Bruxelles, Campus Erasme, B-1070 Bruxelles, Belgium
Abstract
CCR5 is a chemokine receptor expressed by T cells and macrophages, which also functions as the principal coreceptor for macrophage (M)-tropic strains of HIV-1. To understand the molecular basis of the binding of chemokines and HIV-1 to CCR5, we developed a number of mAbs that inhibit the various interactions of CCR5, and mapped the binding sites of these mAbs using a panel of CCR5/CCR2b chimeras. One mAb termed 2D7 completely blocked the binding and chemotaxis of the three natural chemokine ligands of CCR5, RANTES (regulated on activation normal T cell expressed and secreted), macrophage inflammatory protein (MIP)-1α, and MIP-1β, to CCR5 transfectants. This mAb was a genuine antagonist of CCR5, since it failed to stimulate an increase in intracellular calcium concentration in the CCR5 transfectants, but blocked calcium responses elicited by RANTES, MIP-1α, or MIP-1β. This mAb inhibited most of the RANTES and MIP-1α chemotactic responses of activated T cells, but not of monocytes, suggesting differential usage of chemokine receptors by these two cell types. The 2D7 binding site mapped to the second extracellular loop of CCR5, whereas a group of mAbs that failed to block chemokine binding all mapped to the NH2-terminal region of CCR5. Efficient inhibition of an M-tropic HIV-1–derived envelope glycoprotein gp120 binding to CCR5 could be achieved with mAbs recognizing either the second extracellular loop or the NH2-terminal region, although the former showed superior inhibition. Additionally, 2D7 efficiently blocked the infectivity of several M-tropic and dual-tropic HIV-1 strains in vitro. These results suggest a complicated pattern of HIV-1 gp120 binding to different regions of CCR5, but a relatively simple pattern for chemokine binding. We conclude that the second extracellular loop of CCR5 is an ideal target site for the development of inhibitors of either chemokine or HIV-1 binding to CCR5.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
341 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献