Regulation of the Phosphorylation of Human Pharyngeal Cell Proteins by Group A Streptococcal Surface Dehydrogenase: Signal Transduction between Streptococci and Pharyngeal Cells

Author:

Pancholi Vijaykumar1,Fischetti Vincent A.1

Affiliation:

1. From the Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, 1230 York Avenue, New York, New York 10021

Abstract

Whether cell-to-cell communication results when group A streptococci interact with their target cells is unknown. Here, we report that upon contact with cultured human pharyngeal cells, both whole streptococci and purified streptococcal surface dehydrogenase (SDH) activate pharyngeal cell protein tyrosine kinase as well as protein kinase C, thus regulating the phosphorylation of cellular proteins. SDH, a major surface protein of group A streptococci, has both glyceraldehyde-3-phosphate dehydrogenase and ADP-ribosylating enzyme activities that may relate to early stages of streptococcal infection. Intact streptococci and purified SDH induce a similar protein phosphorylation pattern with the de novo tyrosine phosphorylation of a 17-kD protein found in the membrane/particulate fraction of the pharyngeal cells. However, this phosphorylation required the presence of cytosolic components. NH2-terminal amino acid sequence analysis identified the 17-kD protein as nuclear core histone H3. Both phosphotyrosine and phosphoserine-specific monoclonal antibodies reacted with the 17-kD protein by Western blot, suggesting that the binding of SDH to these pharyngeal cells elicits a novel signaling pathway that ultimately leads to activation of histone H3–specific kinases. Genistein-inhibitable phosphorylation of histone H3 indicates that tyrosine kinase plays a key role in this event. Treatment of pharyngeal cells with protein kinase inhibitors such as genistein and staurosporine significantly inhibited streptococcal invasion of pharyngeal cells. Therefore, these data indicated that streptococci/SDH-mediated phosphorylation plays a critical role in bacterial entry into the host cell. To identify the membrane receptor that elicits these signaling events, we found that SDH bound specifically to 30- and 32-kD membrane proteins in a direct ligand-binding assay. These findings clearly suggest that SDH plays an important role in cellular communication between streptococci and pharyngeal cells that may be important in host cell gene transcription, and hence in the pathogenesis of streptococcal infection.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3