MOLECULAR HETEROGENEITY OF LACTIC DEHYDROGENASE IN AVIAN MALARIA (PLASMODIUM LOPHURAE)

Author:

Sherman Irwin W.1

Affiliation:

1. From The Rockefeller Institute

Abstract

Lactic dehydrogenase activity increased in direct proportion to the degree of parasitization in synchronous infections of duck erythrocytes. Deviations from this linearity could be accounted for on the basis of the developmental stage of the parasite. Erythrocyte-free P. lophurae showed activities which averaged 3 times that of uninfected erythrocytes, whereas infected erythrocytes had intermediate values. In addition, a patent infection was generally reflected by an increase in the lactic dehydrogenase activity in the plasma, but no direct correlation with parasitemia was established. Molecular heterogeneity of the enzyme was determined on the basis of kinetic data and electrophoretic isolation on a starch block. The uninfected red blood cell showed a major anodal and a minor cathodal peak of lactic dehydrogenase activity, and was further characterized by a kinetic constant representing a high pH optimum with low concentrations of substrate. Isolated P. lophurae had a single, cathodal peak of activity dissimilar from that of the uninfected erythrocyte, and a kinetic constant describing a low pH optimum with a high concentration of substrate. Infected erythrocytes showed a combination of these electrophoretic entities and an intermediate range of kinetic constants. The data indicate that the avian malaria parasite P. lophurae contains a lactic dehydrogenase qualitatively dissimilar from that of its host cell, and the increased enzymatic activity of infected erythrocytes is a result of the enzyme content of the growing parasite added to that of the red blood cell. It is suggested that the LDH of the parasite has a physiological advantage under those conditions which prevail inside the red blood cell.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3