Tumor necrosis factor alpha maintains the viability of murine epidermal Langerhans cells in culture, but in contrast to granulocyte/macrophage colony-stimulating factor, without inducing their functional maturation.

Author:

Koch F1,Heufler C1,Kämpgen E1,Schneeweiss D1,Böck G1,Schuler G1

Affiliation:

1. Department of Dermatology, University of Inssbruck, Austria.

Abstract

Freshly isolated murine epidermal Langerhans cells (LC) are weak stimulators of resting T cells but increase their stimulatory capacity 10-30-fold upon 2-3 d of culture together with other epidermal cells. This maturation of LC is mediated by two keratinocyte products. Granulocyte/macrophage colony-stimulating factor (GM-CSF) maintains viability and increases function. IL-1 alone does not keep LC alive, but when combined with GM-CSF further enhances their stimulatory activity. We have now searched for a cytokine that would keep LC in a viable, but functionally immature state. When LC (enriched to greater than 75%) were cultured in the presence of GM-CSF (2 ng/ml) or murine (TNF-alpha) (plateau effect at 62 U/ml), the recovery of viable LC after 72 h was identical. The LC cultured in murine TNF-alpha, however, were 10-30 times less active in stimulating resting T cells. A series of experiments demonstrated that this phenomenon was not due to the induction of insufficient amounts of GM-CSF, the induction of a suppressor factor, or a toxic effect of TNF-alpha. Interestingly, the observed TNF-alpha activity exhibited a species preference, as human TNF-alpha was not active at comparable doses. We have observed an unexpected effect of TNF-alpha on LC in vitro. Though we found that freshly prepared epidermal cells express TNF-alpha mRNA, further studies are needed to establish whether TNF-alpha plays a role in vivo by keeping resident LC in a viable, but functionally immature state.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 210 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3