The glycosyl phosphatidylinositol-linked FcγRIII(PMN) mediates transmembrane signaling events distinct from FcγRII

Author:

Kimberly RP,Ahlstrom JW,Click ME,Edberg JC

Abstract

To investigate the ability of FcγRIII(PMN), the GPI-anchored isoform of FcγRIII (CD16) in polymorphonuclear leukocytes (PMN), to mediate transmembrane signaling events, we measured changes in membrane potential with DiOC(5) and in intracellular calcium with indo-1. FcγR were ligated by anti-FcγRIII mAb 3G8 (IgG and Fab), anti-FcγRII mAb IV.3 (IgG and Fab), and human IgG aggregates. Cell bound mAbs were also crosslinked by goat F(ab')(2) anti-mouse IgG. 3G8 IgG elicited a rapid change in [Ca(2+)](i), which was unaffected by EGTA, Vibrio cholerae toxin (CT), or Bordetella pertussis toxin (PT), and was abolished by BAPTA . Univalent receptor binding with 3G8 Fab gave no response but crosslinking with F(aV)2 GAM gave a rapid [Ca2,](i) response. Neither IV.3 Fab, IV.3 IgG, nor crosslinking of IV.3 Fab elicited a calcium signal. PI-PLC-treated PMN with the density of FcγRIII(PMN) reduced to that of FcγRII showed an unattenuated change in [Ca(2+)](i), with a 3G8 stimulus. The effects of IgG aggregates paralleled those of 3G8 mAb. These data indicate that multivalent ligation of FcγRIII(PMN) initiates an increase in [Ca(2+)];, derived from intracellular stores, that is distinct from both the FMLP- and FcγRII-induced responses. Ligand-dependent interaction with FcγRII is not required. Since FcγRIII(PMN) can internalize the FcγRIII-specific probe Con A-opsonized E and lyse anti-FcγRIII heteroantibody-opsonized chick E, this GPI-anchored molecule mediates both signal transduction and integrated cell responses.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3