Affiliation:
1. Department of Zoology, Kyoto University, Japan.
Abstract
While it has been known that dendritic cells arise from proliferating precursors in situ, it has been difficult to identify progenitors in culture. We find that aggregates of growing dendritic cells develop in cultures of mouse blood that are supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF) but not other CSFs. The dendritic cell precursor derives from the Ia-negative and nonadherent fraction. The aggregates of developing dendritic cells appear at about 1 wk of culture, with 100 or more such clusters being formed per 10(6) blood leukocytes. The aggregates can be dislodged and subcultured as expanding clusters that are covered with cells having the motile sheet-like processes ("veils") of dendritic cells. By about 2 wk, large numbers of single, major histocompatibility complex (MHC) class II-rich dendritic cells begin to be released into the medium. Combined immunoperoxidase and [3H]thymidine autoradiography show that the cells that proliferate within the aggregate lack certain antigenic markers that are found on mature dendritic cells. However, in pulse-chase protocols, the [3H]thymidine-labeled progeny exhibit many typical dendritic cell features, including abundant MHC class II and a cytoplasmic granular antigen identified by monoclonal antibody 2A1. The progeny dendritic cells are potent stimulators of the mixed leukocyte reaction and can home to the T-dependent areas of lymph node after injection into the footpads. We conclude that mouse blood contains GM-CSF-dependent, proliferating progenitors that give rise to large numbers of dendritic cells with characteristic morphology, mobility, phenotype, and strong T cell stimulatory function.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
408 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献