Disparate interaction of peptide ligand with nascent versus mature class I major histocompatibility complex molecules: comparisons of peptide binding to alternative forms of Ld in cell lysates and the cell surface.

Author:

Smith J D1,Lie W R1,Gorka J1,Kindle C S1,Myers N B1,Hansen T H1

Affiliation:

1. Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110.

Abstract

To determine the mechanism and structural consequences of peptide binding to class I molecules, we have studied the Ld molecule of the mouse. Previous studies have shown that a significant proportion of surface and intracellular Ld molecules can be detected in an alternative conformation designated Ldalt. Ldalt molecules are non-ligand associated and show weak if any beta 2-microglobulin (beta 2m) association. We report here that Ld molecules have a relatively rapid surface turnover compared with other class I molecules and that exogenous peptide dramatically prolongs Ld surface half-life. By contrast, Ldalt molecules are stably expressed on the surface and their half-life is unaffected by exogenous peptide. To study the surface interaction of peptide with Ld, live cells were incubated with iodinated peptides and Ld molecules were precipitated from cells precoated with monoclonal antibody before lysis. Using this assay, peptide binding to surface Ld molecules was found not to depend upon exchange with exogenous beta 2m, but did correlate with the level of beta 2m association. To study the intracellular interaction of peptide with Ld, cell lysates were used. In cell lysates, peptide was found to convert Ldalt molecules to properly folded Ld. This peptide-induced folding was almost complete at earlier but not later time points in pulse-chase analyses. Furthermore, conversion of Ldalt to Ld was found to affect almost exclusively immature (Endo Hs) class I molecules. Thus intrinsic properties of immature Ldalt molecules or their associated chaperonins are maintained in cell lysates that allow them to undergo de novo folding in vitro. These combined results demonstrate that immature Ldalt molecules are precursors awaiting constituents such as peptide and beta 2m that influence folding, whereas surface Ldalt molecules appear refractory to association with peptide, beta 2m, and consequent folding.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3