STUDIES IN THE SEROLOGY OF SYPHILIS

Author:

Eagle Harry1

Affiliation:

1. From the Syphilis Division of the Department of Medicine, Johns Hopkins Medical School, Baltimore

Abstract

A. The lipoid antigen used in the serum diagnosis of syphilis, when colloidally dispersed in water, forms a relatively stable amphoteric suspension with predominantly hydrophilic properties. Although the colloidal particles flocculate at their isoelectric point (pH 1.9), in more alkaline reaction the negative surface potential prevents their cohesion and must be depressed to 1 to 5 millivolts before visible flocculation is obtained, indicating a very slight affinity between the colloidal particles. The amount of electrolyte necessary to depress this surface charge below its critical value decreases somewhat with increasing concentration of the sol, but is uniformly large: in a suspension containing 0.04 per cent lipoid, 1 M univalent and 1/40 M bivalent cation are the coagulation values. B. In normal serum, hydrophilic protein is adsorbed, forming a protective film around the individual lipoid particles, with a corresponding change in the cataphoretic potential and the isoelectric point towards those of serum protein, the degree of shift depending upon the extent of the adsorbed film. The critical potential, however, is not affected, and the lipoid remains as stable away from its isoelectric point as in the absence of serum. The water-soluble film of unchanged protein is readily removed by washing, and does not prevent the subsequent combination of the underlying lipoid with the specific component of syphilitic serum. C. When the lipoid antigen is added to syphilitic serum, in addition to this loose adsorption of normal protein it combines more or less irreversibly with a specifically altered fraction of the serum globulin (reagin), demonstrable in the washed precipitate both chemically and by sensitization experiments. Like adsorbed normal serum, it depresses the surface potential and causes a shift in the isoelectric point; but there the similarity ends. The reagin-globulin is rendered water-insoluble by its firm combination with the lipoid, exactly as any antibody is denatured upon combination with its specific antigen (bacteria, red cells, or dissolved protein). The hydrophobic films of reagin have five times as great an affinity for each other as the original lipoid surfaces; accordingly, the critical potential is raised from its original value of 1 to 5 millivolts to 10 to 15 millivolts, that of particles of denatured globulin or of any antigen-antibody complex, and relatively small quantities of electrolytes (at serum pH, cations) suffice to depress the stabilizing potential below this critical level, with resultant aggregation and flocculation. In brief, a specific globulin combines with the colloidal particles of the antigen, conferring upon them the unstable properties of a suspension of denatured protein. Like the antibody film on bacteria, or red cells, and unlike normal adsorbed protein, the reagin globulin on the lipoid particle can adsorb ("fix") complement. When this protein film is destroyed by heat-coagulation, the complement-fixing property is lost; concomitantly, the specific groups of the lipoid having been freed from the closely adherent reagin, the antigen becomes again active, able to react with more syphilitic serum. These changes in the properties of reagin globulin upon its combination with the lipoid antigen (denaturation) are in every sense analogous to those effected in any antibody by its specific antigen, and are probably due to the same, as yet unknown, factors. It has been suggested for bacterial and red cell "agglutinins" and protein "precipitins," that the groups of the antibody determining its specificity are also those which endow it with its hydrophilic properties; when these combine with antigen, residual free hydrophobic groups determine the surface properties of the complex. The same tentative hypothesis may be offered for the denaturation of reagin globulin by the lipoid antigen. The complete analogy between the flocculation reactions for syphilis and the so-called specific reactions (bacterial and red cell agglutination; protein precipitation) suggests that like agglutinins, precipitins, etc., reagin globulin represents an antibody response to products of infection.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harry Eagle;Advances in Cell Culture;1987

2. Clinical investigation of chronic diseases: Its successful pursuit in an outpatient setting;Journal of Chronic Diseases;1980-01

3. Klassische Serologie der Syphilis;Syphilis und Ulcus Molle;1962

4. Die Antigen-Antikörper Bindung;Fortschritte der Serologie;1955

5. BIOLOGIC FALSE POSITIVE SEROLOGIC TESTS FOR SYPHILIS;Medicine;1944-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3