Immunological unresponsiveness to thymus-independent antigens: two fundamentally different genetic mechanisms of B-cell unresponsiveness to dextran

Author:

Fernandez C,Moller G

Abstract

The immune response of mice to the α-l-6 epitope of dextran (Dx) B512 was found to be under genetic control. The congenic mouse strains A, A.CA, A.SW, A.TH, and A.TL exhibited a specific defect in their response to α-l-6. Also strain CBA/N was unresponsive to α-1-6, but the mechanism of unresponsiveness was found to be different. Unresponsiveness to α-l-6 in congenic A strains was not due to suppressor cells. Although these strains failed to respond to the α-l-6 epitope, they responded strongly to the hapten Fluorescein isothiocyanate (FITC) conjugated to Dx, indicating that the Dx can function as an efficient carrier in these strains. Dx was a potent polyclonal B-cell activator in congenic A strains as well as in high responder strains. Polyclonally-activating concentrations of lipopolysaccharide (LPS) failed to induce the synthesis of anti-α- l-6 antibodies in congenic A strains, although antibodies of all other specificities studied were produced. However, in high responder strains, LPS induced the synthesis of anti-α-l-6 antibodies. It was concluded that congenic A strains do not express V genes coding for antibodies against α-l-6. In contrast, strain CBA/N failed to respond to both the α-l-6 and FITC epitope on Dx, whereas they could respond to FITC conjugated to horse erythrocytes. Dx induced a very small, if any, polyclonal antibody response in B cells from CBA/N mice or male CBA/N x DBA hybrids, whereas Dx was a very potent polyclonal B-cell activator in female hybrids. It is concluded that CBA/N mice are nonresponders to Dx or haptenated Dx, because the cell population that can respond to the polyclonal B-cell activating properties of Dx is severely depleted.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3