Coreceptor affinity for MHC defines peptide specificity requirements for TCR interaction with coagonist peptide–MHC

Author:

Hoerter John A.H.1,Brzostek Joanna1,Artyomov Maxim N.2,Abel Steven M.333,Casas Javier1,Rybakin Vasily1,Ampudia Jeanette1,Lotz Carina1,Connolly Janet M.4,Chakraborty Arup K.3335,Gould Keith G.6,Gascoigne Nicholas R.J.1

Affiliation:

1. Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037

2. Broad Institute of MIT and Harvard, Cambridge, MA 02142

3. Department of Chemical Engineering, Department of Chemistry, and Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139

4. Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110

5. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139

6. Department of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, England, UK

Abstract

Recent work has demonstrated that nonstimulatory endogenous peptides can enhance T cell recognition of antigen, but MHCI- and MHCII-restricted systems have generated very different results. MHCII-restricted TCRs need to interact with the nonstimulatory peptide–MHC (pMHC), showing peptide specificity for activation enhancers or coagonists. In contrast, the MHCI-restricted cells studied to date show no such peptide specificity for coagonists, suggesting that CD8 binding to noncognate MHCI is more important. Here we show how this dichotomy can be resolved by varying CD8 and TCR binding to agonist and coagonists coupled with computer simulations, and we identify two distinct mechanisms by which CD8 influences the peptide specificity of coagonism. Mechanism 1 identifies the requirement of CD8 binding to noncognate ligand and suggests a direct relationship between the magnitude of coagonism and CD8 affinity for coagonist pMHCI. Mechanism 2 describes how the affinity of CD8 for agonist pMHCI changes the requirement for specific coagonist peptides. MHCs that bind CD8 strongly were tolerant of all or most peptides as coagonists, but weaker CD8-binding MHCs required stronger TCR binding to coagonist, limiting the potential coagonist peptides. These findings in MHCI systems also explain peptide-specific coagonism in MHCII-restricted cells, as CD4–MHCII interaction is generally weaker than CD8–MHCI.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3