Antigen- and receptor-driven regulatory mechanisms. III. Induction of delayed type hypersensitivity to azobenzenearsonate with anti-cross-reactive idiotypic antibodies.

Author:

Sy M S,Brown A R,Benacerraf B,Greene M I

Abstract

Delayed-type hypersensitivity (DTH) to p-azobenzenearsonate (ABA) can be induced in A/J mice with intravenous injection of minute amounts of anti-cross-reactive idiotypic (CRI) antibodies, providing that the animals have been pretreated 2 d earlier with low doses of cyclophosphamide (50 mg/kg). However intravenous injection of the F(ab')2 fragments of the anti-CRI antibodies or subcutaneous administration with anti-CRI antibodies induces comparable immunity in both cyclophosphamide-pretreated and normal nontreated animals. Furthermore adoptive transfer experiments indicate that lymph node cells taken from animals sensitized with anti-CRI 4 d earlier can adoptively transfer immunity to naive recipients. Transfer of immunity is mediated by a population of thymus-dependent (T) cells, which express idiotypic structures on their surface. Treatment of effector cells with either anti-theta serum or anti-idiotypic antibodies plus complement completely abrogated their ability to transfer immunity. In addition idiotype-bearing suppressor T cells induced with ABA-coupled spleen cells inhibit the development of ABA-specific DTH induced with anti-CRI antibodies. Genetic analysis revealed that the ability of anti-CRI antibodies to induce ABA-specific DTH was linked to Igh-1 heavy-chain allotype. Anti-idiotypic antibodies to the major CRI associated with anti-ABA antibodies in A/J mice failed to induce significant immunity in BALB/c mice (H-2d, Igh-1a). Nevertheless, they were able to induce significant immunity in C.AL20 mice (H-2d, Igh-1d) which possess a heavy-chain allotype similar to that of A/J mice.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3