Failure to trigger the oxidative metabolic burst by normal macrophages: possible mechanism for survival of intracellular pathogens.

Author:

Wilson C B,Tsai V,Remington J S

Abstract

As previously reported, normal human monocytes (11) and activated mouse macrophages (9) are able to kill or inhibit intracellular replication of Toxoplasma that are not antibody coated, whereas normal human and mouse macrophages are not (7, 9). Each of these types of mononuclear phagocytes is able to kill antibody-coated Toxoplasma. In our studies, phagocytosis of antibody-coated Toxoplasma stimulated the respiratory burst by each of these types of mononuclear phagocytes, whereas phagocytosis of organisms that were not antibody coated stimulated the respiratory burst only by human monocytes and by activated mouse macrophages. Phagocytosis of Toxoplasma did not inhibit production of reactive oxygen metabolites by normal macrophages; rather, it failed to stimulate their production. Killing of Toxoplasma by monocytes from a child with X-linked chronic granulomatous disease and his heterozygote mother was impaired. Thus, reactive oxygen metabolites, perhaps in conjunction with lysosomal contents, appear to be first-line mechanisms whereby mononuclear phagocytes kill this organism. We were not able to determine the exact mechanisms whereby mononuclear phagocytes inhibit the replication of those Toxoplasma that were not killed, although both oxygen-dependent and other nonlysosomal mechanisms may be involved. The differences we observed in oxidative response to phagocytosis of Toxoplasma appear to be one determinant of the antimicrobial activity of these cells and may account for the ability of some intracellular pathogens to survive within phagocytes. These differences may be membrane related. Further studies of Toxoplasma membranes, phagocyte membrane receptors for Toxoplasma, and membrane-related mechanisms for activation of the respiratory burst are needed to define their true basis.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 300 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3