Resting and sensitized T lymphocytes exhibit distinct stimulatory (antigen-presenting cell) requirements for growth and lymphokine release.

Author:

Inaba K,Steinman R M

Abstract

Previous studies have shown that unprimed or resting T lymphocytes will grow and release lymphokines when stimulated by dendritic cells (DC). We now have examined the stimulatory requirements for antigen-primed or blast-transformed T cells. The latter were derived from dendritic/T cell clusters that developed during the primary mixed leukocyte reaction (MLR). The specificity of the blasts was established by a binding assay in which most T cells aggregated small B lymphocytes of the appropriate haplotype within 2 h at 4 or 37 degrees C. Since unprimed T cells did not aggregate allogeneic B cells, we suggest that DC induce T lymphocytes to express additional functioning receptors for antigen. Lyt-2-T blasts did not grow or release interleukin 2 or B cell helper factors unless rechallenged with specific alloantigen, whereupon growth (generation time of 14-18 h) and lymphokine release rapidly resumed. The blasts could be stimulated by allogeneic macrophages, B cells, and B lymphoblasts, whereas the primary MLR was initiated primarily by DC. responsiveness appeared restricted to the I region of the major histocompatibility complex, and varied directly with the level of Ia antigens on the stimulator cells. The interaction of B cells and T blasts was bidirectional. The T blasts would grow and form B cell helper factors, while the B cells grew and secreted antibody. However, the efficacy of T cell-mediated antibody formation was enhanced some 10-fold by the addition of specific antigen. Therefore, responses of resting helper T cells, then, are initiated by antigen plus DC. Once sensitized, T blasts interact independently with antigen presented by other leukocytes.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 307 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3