Inhibition of antigen-specific T lymphocyte activation by structurally related Ir gene-controlled polymers. II. Competitive inhibition of I-E-restricted, antigen-specific T cell responses.

Author:

Rock K L,Benacerraf B

Abstract

Our previous studies have defined a highly specific competitive inhibition between a pair of structurally related antigens (GT and GAT) for antigen presentation by accessory cells. The present report investigates this phenomenon in a second antigenic system, which is controlled by a distinct Ir gene product. Two GL phi-specific, I-Ed-restricted, interleukin 2-producing T cell hybridomas were constructed. The antigenic fine specificity of these two hybrid clones was distinct. One hybrid reacted solely with GL phi while the second cross-reacted with GLleu and GLT. These latter two copolymers, as well as the antigen GL, were found to inhibit the GL phi response of the non-cross-reactive hybrid. The structurally related antigen G phi was not inhibitory for this clone's response. The cross-reactive GL phi hybrid could also be inhibited, but, in this case, G phi and not GL caused the inhibition. Reciprocal inhibitions could be demonstrated between these and other hybrids (e.g., GAT responsive), indicating a very high degree of specificity to the inhibition. The inhibition caused by the various copolymers was reversible by increasing the concentration of GL phi, This effect was localized to the antigen-presenting cell and not the T cell hybridoma. Functionally, this competition did not appear to be for antigen uptake or general antigen processing. These findings generalize the phenomenon of antigen competition to a second antigen system in the context of a second Ia molecule. The possible mechanisms accounting for the complex pattern of specificities in this system are discussed.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3