Regulation of osteoclast function and bone mass by RAGE

Author:

Zhou Zheng1,Immel David2,Xi Cai-Xia1,Bierhaus Angelika3,Feng Xu4,Mei Lin1,Nawroth Peter3,Stern David M.5,Xiong Wen-Cheng1

Affiliation:

1. Institute of Molecular Medicine and Genomics and Department of Neurology, Medical College of Georgia, Augusta, GA, 30912

2. Savannah River National Laboratory, Aiken, SC 29808

3. Department of Medicine I, University of Heidelberg, 69120 Heidelberg, Germany

4. Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294

5. Dean's Office, College of Medicine, University of Cincinnati, Cincinnati, OH 45267

Abstract

The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily that has multiple ligands and is implicated in the pathogenesis of various diseases, including diabetic complications, neurodegenerative disorders, and inflammatory responses. However, the role of RAGE in normal physiology is largely undefined. Here, we present evidence for a role of RAGE in osteoclast maturation and function, which has consequences for bone remodeling. Mice lacking RAGE had increased bone mass and bone mineral density and decreased bone resorptive activity in vivo. In vitro–differentiated RAGE-deficient osteoclasts exhibited disrupted actin ring and sealing zone structures, impaired maturation, and reduced bone resorptive activity. Impaired signaling downstream of αvβ3 integrin was observed in RAGE−/− bone marrow macrophages and precursors of OCs. These results demonstrate a role for RAGE in osteoclast actin cytoskeletal reorganization, adhesion, and function, and suggest that the osteosclerotic-like phenotype observed in RAGE knockout mice is due to a defect in osteoclast function.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3