Cellular immune selection with hepatitis C virus persistence in humans

Author:

Cox Andrea L.12,Mosbruger Timothy1,Mao Qing1,Liu Zhi1,Wang Xiao-Hong1,Yang Hung-Chih1,Sidney John3,Sette Alessandro3,Pardoll Drew1245,Thomas David L.16,Ray Stuart C.1

Affiliation:

1. Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21231

2. Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21231

3. La Jolla Institute for Allergy and Immunology, San Diego, CA 92121

4. Department of Molecular Biology and Genetics, Johns Hopkins Medical Institutions, Baltimore, MD 21231

5. Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231

6. Department of Epidemiology, Johns Hopkins Medical Institutions, Baltimore, MD 21231

Abstract

Hepatitis C virus (HCV) infection frequently persists despite substantial virus-specific cellular immune responses. To determine if immunologically driven sequence variation occurs with HCV persistence, we coordinately analyzed sequence evolution and CD8+ T cell responses to epitopes covering the entire HCV polyprotein in subjects who were followed prospectively from before infection to beyond the first year. There were no substitutions in T cell epitopes for a year after infection in a subject who cleared viremia. In contrast, in subjects with persistent viremia and detectable T cell responses, we observed substitutions in 69% of T cell epitopes, and every subject had a substitution in at least one epitope. In addition, amino acid substitutions occurred 13-fold more often within than outside T cell epitopes (P < 0.001, range 5–38). T lymphocyte recognition of 8 of 10 mutant peptides was markedly reduced compared with the initial sequence, indicating viral escape. Of 16 nonenvelope substitutions that occurred outside of known T cell epitopes, 8 represented conversion to consensus (P = 0.015). These findings reveal two distinct mechanisms of sequence evolution involved in HCV persistence: viral escape from CD8+ T cell responses and optimization of replicative capacity.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3