Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based population of memory B cells

Author:

Ehrhardt Götz R.A.12,Hsu Joyce T.1,Gartland Lanier12,Leu Chuen-Miin1,Zhang Shuangyin1,Davis Randall S.1345,Cooper Max D.14657

Affiliation:

1. Division of Clinical and Developmental Immunology, University of Alabama at Birmingham, Birmingham, AL 35294

2. Howard Hughes Medical Institute, University of Alabama at Birmingham, Birmingham, AL 35294

3. Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL 35294

4. Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294

5. Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294

6. Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294

7. Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294

Abstract

The FcRH4 transmembrane molecule, a member of the Fc receptor homologue family, can potently inhibit B cell receptor (BCR) signaling. We show that cell surface expression of this immunoregulatory molecule is restricted to a subpopulation of memory B cells, most of which lack the classical CD27 marker for memory B cells in humans. The FcRH4+ and FcRH4− memory B cells have undergone comparable levels of immunoglobulin isotype switching and somatic hypermutation, while neither subpopulation expresses the transcription factors involved in plasma cell differentiation. The FcRH4+ memory cells are morphologically distinctive large lymphocytes that express the CD69, CD80, and CD86 cell activation markers. They are also shown to be poised to secrete high levels of immunoglobulins in response to stimulation with T cell cytokines, but they fail to proliferate in response either to BCR ligation or Staphylococcus aureus stimulation. A heightened expression of the CCR1 and CCR5 chemokine receptors may facilitate their preferential localization in lymphoid tissues near epithelial surfaces. Cell surface FcRH4 expression thus marks a unique population of memory B cells with distinctive morphology, functional capabilities, and tissue localization.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3