Physiological pathway of differentiation of hematopoietic stem cell population into mural cells

Author:

Yamada Yoshihiro12,Takakura Nobuyuki12

Affiliation:

1. Department of Stem Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan

2. PRESTO, Japan Science Technology Agency, Saitama 332-0012, Japan

Abstract

Endothelial cells (ECs), which are a major component of blood vessels, have been reported to develop in adulthood from hematopoietic cell populations, especially those of the monocyte lineage. Here we show that mural cells (MCs), another component of blood vessels, develop physiologically during embryogenesis from a hematopoietic stem cell (HSC) population, based on the in vitro culture of HSCs and histological examination of acute myeloid leukemia 1 mutant embryos, which lack HSCs. As in the embryo, HSCs in adult bone marrow differentiate into CD45+CD11b+ cells before differentiating into MCs. Moreover, CD45+CD11b+ cells are composed of two populations, CD11bhigh and CD11blow cells, both of which can differentiate into MCs as well as ECs. Interestingly, in a murine ischemia model, MCs and ECs derived from the CD11blow population had a long-term potential to contribute to the formation of newly developed blood vessels in vivo compared with the CD11high population, which could not. Moreover, injection of the CD11bhigh population induced leaky blood vessels, but the CD11blow population did not. With respect to the permeability of vessels, we found that angiopoietin 1, which is a ligand for Tie2 receptor tyrosine kinase expressed on ECs and is suggested to induce cell adhesion between ECs and MCs, is produced by the CD11blow population and plays a critical role in the formation of nonleaky vessels. These observations suggested that the CD11low cell population serves as a good source of cells for in vivo blood vessel regeneration.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3