Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor

Author:

Khalil Shadi1,Delehanty Lorrie1ORCID,Grado Stephen1,Holy Maja1ORCID,White Zollie1ORCID,Freeman Katie1,Kurita Ryo23,Nakamura Yukio23,Bullock Grant4,Goldfarb Adam1ORCID

Affiliation:

1. Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA

2. Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan

3. Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan

4. Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA

Abstract

Iron-restricted human anemias are associated with the acquisition of marrow resistance to the hematopoietic cytokine erythropoietin (Epo). Regulation of Epo responsiveness by iron availability serves as the basis for intravenous iron therapy in anemias of chronic disease. Epo engagement of its receptor normally promotes survival, proliferation, and differentiation of erythroid progenitors. However, Epo resistance caused by iron restriction selectively impairs proliferation and differentiation while preserving viability. Our results reveal that iron restriction limits surface display of Epo receptor in primary progenitors and that mice with enforced surface retention of the receptor fail to develop anemia with iron deprivation. A mechanistic pathway is identified in which erythroid iron restriction down-regulates a receptor control element, Scribble, through the mediation of the iron-sensing transferrin receptor 2. Scribble deficiency reduces surface expression of Epo receptor but selectively retains survival signaling via Akt. This mechanism integrates nutrient sensing with receptor function to permit modulation of progenitor expansion without compromising survival.

Funder

National Institutes of Health

Leukemia and Lymphoma Society

National Cancer Institute

University of Virginia

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3