DETERMINATION OF THE VOLUME OF THE EXTRACELLULAR FLUID OF THE BODY WITH RADIOACTIVE SODIUM

Author:

Kaltreider Nolan L.1,Meneely George R.1,Allen James R.1,Bale William F.1

Affiliation:

1. From the Departments of Medicine and Radiology, School of Medicine and Dentistry, University of Rochester, and the Medical Clinics of the Strong Memorial and Rochester Municipal Hospital, Rochester, New York

Abstract

A method for measuring the volume of fluid available for the distribution of sodium (sodium space) by the use of its radioactive isotope (Na24) has been described and the accuracy of the method has been discussed. Simultaneous determinations of the plasma volume by means of the blue dye T-1824 and the volume of the extracellular fluid by employing radiosodium and sodium thiocyanate have been made in normal subjects. Repeated measurements were made at varying periods of time in the same individuals. In order to establish the rate of diffusion equilibrium for the radioactive isotope of sodium and thiocyanate between serum and serous effusions, simultaneous samples of both were obtained at varying intervals after the intravenous injection of these substances. Since evidence in the literature indicates that there is an excess of sodium mainly limited to bone, which cannot be attributed to the extracellular phase, experiments on dogs and man were so devised that the ratio of tissue concentration to plasma concentration for radiosodium and chemically determined chloride could be calculated. The following conclusions may be drawn from the results of this investigation: 1. Radiosodium after intravenous administration spreads rapidly during the first 3 hours from the plasma into a volume of fluid which represents approximately 25 per cent of the body weight of man. Thereafter for 6 hours it diffuses more slowly into certain tissue spaces—the central nervous system and probably the skeleton. The plasma volume and interstitial fluid represent 15 and 85 per cent of the sodium space respectively. 2. Diffusion equilibrium for both radiosodium and thiocyanate is not established between serum and transudates in edematous patients until from 9 to 12 hours after the intravenous injection of these substances. 3. Until more complete information is available, it is concluded that unless the difference between repeated observations on the same individual exceeds ±1.38 liters there is no significant change in the sodium space providing that the activity of the standard and serum samples are in the range of 40 counts per minute per milliliter with the counting apparatus used. As the activity of the samples increases, the error becomes less because there is no correlation between the magnitude of the error and the magnitude of the activity. 4. Climatic conditions produce no significant changes in the volume of the blood or extracellular fluid. 5. In the dog, following the intravenous injection of radiosodium, the concentration of the isotope in bone reaches its maximum rapidly (3 hours). The extra sodium in the skeleton of dog is equal to about ¼ of the total counts in the body, assuming that the chloride space of bone represents its extracellular volume. Similar amounts of excess sodium are found in the skeleton of man 12 hours after the administration of Na24. 6. Correction of the sodium space of man for the excess sodium reduced the average value by 3.7 liters or 18.9 per cent. The average corrected volume for the normal subjects 6 hours after the injection is 15.9 liters or 21.1 per cent of the body weight compared with the thiocyanate space of 17.7 liters, representing 23.5 per cent of the body weight. 7. The most useful method for calculating the sodium space from the data obtained after intravenous administration of radiosodium is as follows: See PDF for Equation This space exceeds the volume of extracellular fluid by the amount of excess sodium in the body that cannot be attributed to the extracellular phase. 8. While neither the thiocyanate method nor the radiosodium method gives precise estimates of the extracellular fluid, the error is of the same order of magnitude in both. For clinical use, the thiocyanate method is superior because of the ready availability of the substance, and the apparatus required.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sodium—not harmful?;Pediatric Nephrology;2020-05-21

2. Disorders of water and sodium homeostasis and bone;Current Opinion in Endocrine and Metabolic Research;2018-12

3. Hyponatremia and the risk of kidney stones: A matched case-control study in a large U.S. health system;PLOS ONE;2018-09-21

4. Fluid balance concepts in medicine: Principles and practice;World Journal of Nephrology;2018-01-06

5. Sodium homeostasis and bone;Current Opinion in Nephrology and Hypertension;2014-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3