ADAPTATIONS OF ENERGY METABOLISM IN THE CULTIVATED MACROPHAGE

Author:

Simon Lawrence M.1,Axline Stanton G.1,Horn Barry R.1,Robin Eugene D.1

Affiliation:

1. From the Department of Medicine, Stanford University School of Medicine, Stanford, California 94305 and Stanford Medical Service, Veterans Administration Hospital, Palo Alto, California 94304

Abstract

Adaptive changes in energy metabolism, as reflected by pyruvate kinase and cytochrome oxidase activities, were examined during in vitro differentiation of the cultivated macrophage. Serum concentrations of tissue culture media, which directly influence endocytic activity, and ambient oxygen tension were both shown to influence pyruvate kinase and cytochrome oxidase activities. Cells maintained in high serum concentrations (30% newborn calf serum [NBCS]) exhibited a 300–400% increase in pyruvate kinase activity and a 40% increase in cytochrome oxidase activity, whereas cells maintained in low serum concentrations (2% NBCS) exhibited a lesser increase (65%) in pyruvate kinase activity and no change in cytochrome oxidase activity. Anaerobiosis resulted in additional alterations in pyruvate kinase and cytochrome oxidase activities. Cells maintained for 48–72 h under anaerobic conditions exhibited a 500–600% increase in pyruvate kinase activity and a 40% decrease in cytochrome oxidase activity. Increased pyruvate kinase activity was dependent on continued protein synthesis. Enzyme increases occurred in anaerobically cultured cells despite an overall reduction in cell protein synthesis. It is suggested that adaptive changes in pyruvate kinase and cytochrome oxidase activity resulting from alterations in either serum concentration or ambient oxygen tension are regulated by two independent mechanisms. One mechanism is aimed at providing energy for endocytic activity and the other in compensating for impaired oxidative metabolism during anaerobiosis.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3