15-epi-lipoxin A4–mediated Induction of Nitric Oxide Explains How Aspirin Inhibits Acute Inflammation

Author:

Paul-Clark Mark J.1,van Cao Thong1,Moradi-Bidhendi Niloufar2,Cooper Dianne1,Gilroy Derek W.1

Affiliation:

1. Department of Biochemical Pharmacology

2. Department of Clinical Pharmacology, William Harvey Research Institute, St. Bartholomew's Hospital and The Royal London School of Medicine and Dentistry, London EC1M 6BQ, England, UK

Abstract

The established model for the mechanism of action of aspirin is the inhibition of prostaglandin synthesis. However, this has never fully explained aspirin's repertoire of antiinflammatory properties. We found in acute pleuritis that aspirin, but not salicylate, indomethacin, or piroxicam, increased plasma nitric oxide (NO), which correlated with a reduction in inflammation. Inhibiting aspirin-elicited NO pharmacologically in this model nullified the antiinflammatory effects of aspirin. Moreover, aspirin was not antiinflammatory in either constitutive (eNOS) or inducible NO synthase (iNOS) knockout mice with IL-1β–induced peritonitis. It transpires that aspirin generates NO through its unique ability to trigger the synthesis of 15-epi-lipoxin A4. Aspirin and 15-epi-lipoxin A4 were shown to inhibit leukocyte trafficking in an NO-dependent manner using intravital microscopy on IL-1β–stimulated mouse mesentery. Not only did aspirin inhibit leukocyte–endothelial interaction in a manner similar to NO in wild-type mice but both aspirin and 15-epi-lipoxin A4 had markedly reduced effects on leukocyte–endothelial cell adherence in eNOS- and iNOS-deficient mice compared with wild type. Collectively, these data suggest that aspirin triggers the synthesis of 15-epi-lipoxin A4, which increases NO synthesis through eNOS and iNOS. This aspirin-elicited NO exerts antiinflammatory effects in the microcirculation by inhibiting leukocyte–endothelium interactions.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 202 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3