CXCR2- and E-Selectin–induced Neutrophil Arrest during Inflammation In Vivo

Author:

Smith Michael L.1,Olson Timothy S.2,Ley Klaus123

Affiliation:

1. Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908

2. Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908

3. Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908

Abstract

The signaling events leading to the activation of integrins and firm arrest of rolling neutrophils in inflamed venules have yet to be elucidated. In vitro assays suggest that both E-selectin and chemokines can trigger arrest of rolling neutrophils, but E-selectin−/− mice have normal levels of adherent neutrophils in inflamed venules. To test whether chemokine-induced neutrophil arrest in vivo can be unmasked by blocking E-selectin, we investigated neutrophil adhesion in inflamed cremaster muscle venules in tumor necrosis factor (TNF)-α–treated CXCR2−/− or wild-type (WT) mice injected with E-selectin blocking monoclonal antibody (mAb) 9A9. To block chemokine receptor signaling, we investigated E-selectin−/− or WT mice treated with pertussis toxin (PTx) intravenously. Neutrophil adhesion was unchanged in CXCR2−/−, E-selectin−/−, PTx-treated WT, or mAb 9A9–treated WT mice. However, TNF-α–induced neutrophil adhesion was almost completely abrogated in E-selectin−/− mice treated with PTx and significantly reduced in CXCR2−/− mice treated with the E-selectin blocking mAb. In thioglycollate-induced peritonitis, PTx treatment blocked neutrophil recruitment into the peritoneum of E-selectin−/− mice, but had only a partial effect in WT animals. These data show that E-selectin– and chemokine-mediated arrest mechanisms are overlapping in this model and identify CXCR2 as an important neutrophil arrest chemokine in vivo.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Therapeutic inhibition of CXCR1/2: where do we stand?;Internal and Emergency Medicine;2023-05-30

2. ELMO1 Deficiency Reduces Neutrophil Chemotaxis in Murine Peritonitis;International Journal of Molecular Sciences;2023-04-30

3. Physiological Changes in the Local Onco-Sphere: Angiogenesis;Tumor Ecosystem;2023

4. Imaging Inflammation by Intravital Microscopy;Imaging Inflammation;2023

5. The immunological function of CXCR2 in the liver during sepsis;Journal of Inflammation;2022-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3