Activated Polymorphonuclear Leukocytes Rapidly Synthesize Retinoic Acid Receptor-α

Author:

Yost Christian C.12,Denis Melvin M.32,Lindemann Stephan2,Rubner Frederick J.12,Marathe Gopal K.2,Buerke Michael4,McIntyre Thomas M.532,Weyrich Andrew S.52,Zimmerman Guy A.52

Affiliation:

1. Department of Pediatrics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112

2. Program in Human Molecular Biology and Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112

3. Department of Pathology, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112

4. Department of Internal Medicine III, Martin Luther University, 40 06097 Halle-Wittenburg, Germany

5. Department of Internal Medicine, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112

Abstract

In addition to releasing preformed granular proteins, polymorphonuclear leukocytes (PMNs) synthesize chemokines and other factors under transcriptional control. Here we demonstrate that PMNs express an inducible transcriptional modulator by signal-dependent activation of specialized mechanisms that regulate messenger RNA (mRNA) translation. HL-60 myelocytic cells differentiated to surrogate PMNs respond to activation by platelet activating factor by initiating translation and with appearance of specific mRNA transcripts in polyribosomes. cDNA array analysis of the polyribosome fraction demonstrated that retinoic acid receptor (RAR)-α, a transcription factor that controls the expression of multiple genes, is one of the polyribosome-associated transcripts. Quiescent surrogate HL60 PMNs and primary human PMNs contain constitutive message for RAR-α but little or no protein. RAR-α protein is rapidly synthesized in response to platelet activating factor under the control of a specialized translational regulator, mammalian target of rapamycin, and is blocked by the therapeutic macrolide rapamycin, events consistent with features of the 5′ untranslated region of the transcript. Newly synthesized RAR-α modulates production of interleukin-8. Rapid expression of a transcription factor under translational control is a previously unrecognized mechanism in human PMNs that indicates unexpected diversity in gene regulation in this critical innate immune effector cell.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3