INCREASED RESISTANCE TO INFECTION AND ACCOMPANYING ALTERATION IN PROPERDIN LEVELS FOLLOWING ADMINISTRATION OF BACTERIAL LIPOPOLYSACCHARIDES

Author:

Landy Maurice1,Pillemer Louis1

Affiliation:

1. From the Walter Reed Army Institute of Research, Washington, D.C., and the Institute of Pathology, Western Reserve University, Cleveland

Abstract

It has been shown that injection of lipopolysaccharides, derived from a variety of Gram-negative bacterial species, evokes in mice a rapidly developing rise in resistance to infection with Gram-negative pathogens. This is accompanied by an elevation in properdin titer, at times to levels 2 to 3 times the normal. The rate, magnitude, and duration of these responses are dependent on many factors, the most important of which are the quantity and timing of the lipopolysaccharide administered. The increased resistance to infection evoked in mice by lipopolysaccharides was effective against infections produced by endotoxin-bearing organisms-bacterial species highly susceptible in vitro to the bactericidal action of the properdin system. Properdin titers of mice prior to infection provide an incomplete picture of the subsequent reaction of the host to the infective agent. Following infection with Gram-negative organisms, properdin levels accurately reflect the bacteriologic course and outcome of the infection. Thus, in control animals, properdin titers progressively declined and the animals died, while in mice appropriately treated with lipopolysaccharide, properdin levels were either maintained in the normal range or increased, depending on the dose and time of administration of lipopolysaccharide; this was always accompanied by successful management of the infection. The complex nature of the alterations produced in the host by lipopolysaccharides is stressed. It is pointed out that the increase in the ability of the host to cope with Gram-negative infections may be the result of stimulation of other defense mechanisms, in addition to the properdin system.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3