The rat c-kit ligand, stem cell factor, induces the development of connective tissue-type and mucosal mast cells in vivo. Analysis by anatomical distribution, histochemistry, and protease phenotype.

Author:

Tsai M1,Shih L S1,Newlands G F1,Takeishi T1,Langley K E1,Zsebo K M1,Miller H R1,Geissler E N1,Galli S J1

Affiliation:

1. Department of Pathology, Beth Israel Hospital, Boston, Massachusetts 02215.

Abstract

Mast cell development is a complex process that results in the appearance of phenotypically distinct populations of mast cells in different anatomical sites. Mice homozygous for mutations at the W or S1 locus exhibit several phenotypic abnormalities, including a virtual absence of mast cells in all organs and tissues. Recent work indicates that W encodes the c-kit tyrosine kinase receptor, whereas S1 encodes a c-kit ligand that we have designated stem cell factor (SCF). Recombinant or purified natural forms of the c-kit ligand induce proliferation of certain mast cell populations in vitro, and injection of recombinant SCF permits mast cells to develop in mast cell-deficient WCB6F1-S1/S1d mice. However, the effects of SCF on mast cell proliferation, maturation, and phenotype in normal mice in vivo were not investigated. We now report that local administration of SCF in vivo promotes the development of connective tissue-type mast cells (CTMC) in the skin of mice and that systemic administration of SCF induces the development of both CTMC and mucosal mast cells (MMC) in rats. Rats treated with SCF also develop significantly increased tissue levels of specific rat mast cell proteases (RMCP) characteristic of either CTMC (RMCP I) or MMC (RMCP II). These findings demonstrate that SCF can induce the expansion of both CTMC and MMC populations in vivo and show that SCF can regulate at least one cellular lineage that expresses c-kit, the mast cell, through complex effects on proliferation and maturation.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 270 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3