Identification of a thyroxine-containing self-epitope of thyroglobulin which triggers thyroid autoreactive T cells.

Author:

Champion B R1,Page K R1,Parish N1,Rayner D C1,Dawe K1,Biswas-Hughes G1,Cooke A1,Geysen M1,Roitt I M1

Affiliation:

1. Immunology Department, University College and Middlesex Medical School, London, United Kingdom.

Abstract

Although thyroglobulin (Tg), the thyroid prohormone, is well known as a T cell dependent autoantigen in human and experimental autoimmune thyroid disease, very little is known about the molecular basis of Tg recognition by T cells. In this paper, we have characterized the epitopes recognized by two clonotypically distinct, murine Tg autoreactive T cell hybridomas, CH9 and ADA2. In vitro iodination of a Tg preparation which was deficient in in vivo organified iodine was first used to confirm our previous observation that these T cells recognize iodination-related epitopes in the Tg molecule. Affinity chromatography of tryptic peptides derived from normally iodinated human Tg revealed that these epitopes were exclusively located in thyroxine (T4) containing peptides. Through the use of synthetic T4-containing peptides, representing the four major hormonogenic sites in Tg, we demonstrated that both CH9 and ADA2 recognize an epitope containing the T4 at position 2553 in human Tg. Sets of overlapping 5mer to 12mer peptides around this T4 showed that the most potent peptide was a 9mer beginning at Asp 2551. The T4 was shown to be a critical residue, since its replacement with any of the 20 naturally occurring amino acids produced only nonstimulatory peptides. Since the T cell hybridomas could also be stimulated by major histocompatibility complex class II positive (interferon-gamma-treated) thyroid epithelial cells in vitro, and their parent T cell lines can induce thyroiditis on adoptive transfer, the T4-containing Tg sequence described here is implicated as a pathogenic epitope in murine thyroid autoimmunity.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3