The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule 1.

Author:

Berg E L1,Yoshino T1,Rott L S1,Robinson M K1,Warnock R A1,Kishimoto T K1,Picker L J1,Butcher E C1

Affiliation:

1. Department of Pathology, Stanford University, California 94305.

Abstract

A skin-associated population of memory T lymphocytes, defined by expression of the cutaneous lymphocyte antigen (CLA), binds selectively and avidly to the vascular lectin endothelial cell-leukocyte adhesion molecule 1 (ELAM-1), an interaction that may be involved in targeting of CLA+ T cells to cutaneous sites of chronic inflammation. Here we present evidence that CLA itself is the (or a) lymphocyte homing receptor for ELAM-1. Antigen isolated with anti-CLA monoclonal antibody HECA-452 from human tonsillar lysates avidly binds ELAM-1 transfected mouse cells. Anti-CLA antibody blocks T lymphocyte binding to ELAM-1 transfectants. HECA-452 and ELAM-1 binding to lymphocytes or to isolated tonsillar HECA-452 antigen is abrogated by neuraminidase treatment implying a prominent role for sialic acid in CLA structure and function. The dominant form of CLA on T cells is immunologically distinct from the major neutrophil ELAM-1 ligand, the sialyl Lewis x (sLex) antigen (NeuAc alpha 2-3Gal beta 1-4[Fuc alpha 1-3]GlcNAc), which is absent, weakly expressed, or masked on T cells. However, neuraminidase treatment of CLA+ T cells, but not of CLA- T cells, reveals Lewis x (CD15) structures. In combination with the known requirement for terminal NeuAc alpha 2-3Gal and fucose residues attached to N-acetylglucosamine for ELAM-1 and HECA-452 binding, this finding suggests that CLA may comprise an additionally sialylated or otherwise modified form of sLex. The identification of a lymphocyte homing receptor for skin may permit novel approaches to the diagnosis and therapy of cutaneous and inflammatory disorders.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3