Retinoic acid signaling during priming licenses intestinal CD103+ CD8 TRM cell differentiation

Author:

Qiu Zhijuan1ORCID,Khairallah Camille1ORCID,Chu Timothy H.1ORCID,Imperato Jessica N.1ORCID,Lei Xinyuan1ORCID,Romanov Galina1ORCID,Atakilit Amha2ORCID,Puddington Lynn3ORCID,Sheridan Brian S.1ORCID

Affiliation:

1. Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University 1 , Stony Brook, NY, USA

2. Lung Biology Center, Department of Medicine, University of California, San Francisco 2 , San Francisco, CA, USA

3. Department of Immunology, University of Connecticut Health 3 , Farmington, CT, USA

Abstract

CD8 tissue-resident memory T (TRM) cells provide frontline protection at barrier tissues; however, mechanisms regulating TRM cell development are not completely understood. Priming dictates the migration of effector T cells to the tissue, while factors in the tissue induce in situ TRM cell differentiation. Whether priming also regulates in situ TRM cell differentiation uncoupled from migration is unclear. Here, we demonstrate that T cell priming in the mesenteric lymph nodes (MLN) regulates CD103+ TRM cell differentiation in the intestine. In contrast, T cells primed in the spleen were impaired in the ability to differentiate into CD103+ TRM cells after entry into the intestine. MLN priming initiated a CD103+ TRM cell gene signature and licensed rapid CD103+ TRM cell differentiation in response to factors in the intestine. Licensing was regulated by retinoic acid signaling and primarily driven by factors other than CCR9 expression and CCR9-mediated gut homing. Thus, the MLN is specialized to promote intestinal CD103+ CD8 TRM cell development by licensing in situ differentiation.

Funder

National Institutes of Health

Stony Brook University

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3