REJECTION OF TUMOR ALLOGRAFTS BY MOUSE SPLEEN CELLS SENSITIZED IN VITRO

Author:

Cohen Irun R.1,Globerson Amiela1,Feldman Michael1

Affiliation:

1. From the Department of Cell Biology, The Weizmann Institute of Science, Rehovoth, Israel

Abstract

This paper reports a model system of cellular immunity in which allosensitization of mouse spleen cells is induced in vitro. Allosensitization was achieved by culturing spleen cells upon monolayers of allogeneic fibroblasts. The ability of the spleen cells to inhibit the growth of tumor allografts in vivo served as a functional assay of sensitization. We found that unsensitized spleen cells or spleen cells sensitized against unrelated fibroblast antigens had no inhibitory effect on the growth of allogeneic fibrosarcoma cells when they were injected together into irradiated recipients. In contrast, spleen cells which were specifically allosensitized in vitro were found to be highly effective in inhibiting the growth of an equal number of allogeneic tumor cells. Several times more spleen cells from mice sensitized in vivo were required to produce a similar immune effect. This confirms the findings of previous studies which indicate that sensitization in cell culture can promote the selection of specifically sensitized lymphocytes. Preincubating sensitizing fibroblasts with allo-antisera blocked the allosensitization of spleen cells. This suggests that antibodies binding to fibroblasts may inhibit the induction of sensitization by competing with lymphocytes for antigenic sites. Mouse spleen cells which were able to recognize and reject tumor allografts in vivo were unable to cause lysis of target fibroblasts in vitro. Such fibroblasts, however, were susceptible to lysis by rat lymphoid cells sensitized by a similar in vitro method. These findings indicate that the conditions required for lymphocyte-mediated lysis of target cells may not be directly related to the processes of antigen recognition and allograft rejection in vivo.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3