MACROPHAGE PLASMA MEMBRANE

Author:

Nachman Ralph L.1,Ferris Barbara1,Hirsch James G.1

Affiliation:

1. From The New York Hospital—Cornell Medical Center and The Rockefeller University, New York 10021

Abstract

Rabbit alveolar macrophages were incubated in vitro with radioactive protein precursors. Plasma membranes were isolated from these cells, dissolved in phenol-urea-acetic acid, and separated by acrylamide gel electrophoresis. 3H-leucine was rapidly incorporated into membrane protein. The rate of labeling with 3H-leucine was markedly different from one protein band to another, indicating heterogeneous or multistep synthesis and assembly of proteins in the alveolar macrophage plasma membrane. Cells incubated with 3H-choline incorporated this compound into membrane lecithin. On gel electrophoresis the label derived from choline was located in the two bands migrating most rapidly towards the cathode. Studies on cells incubated with 3H-glucosamine revealed incorporation of label into two protein bands, one located near the origin and the other migrating rapidly towards the cathode. The in vitro techniques were also employed for pulse-chase studies to gain information on rate of turnover of macrophage plasma membrane proteins. This turnover rate was rapid, with a half-life of approximately 8 hr. The radioactivity disappeared from the several protein bands at the same rate, suggesting bulk removal of membrane rather than catabolism of the individual proteins in situ. Endocytosis seems a likely mechanism to account for a major part of the plasma membrane removal. Studies on the protein components of phagolysosomal membranes from cells which had been labeled with 3H-leucine revealed the presence of all of the major labeled protein bands characteristic of the plasma membrane except one, thus confirming the bulk interiorization of large segments or units of plasma membrane by endocytic processes.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3