STUDIES ON PERSISTENT INFECTIONS OF TISSUE CULTURES

Author:

Rodriguez José E.1,Henle Werner1

Affiliation:

1. From the Virus Laboratories at The Children's Hospital of Philadelphia, and the School of Medicine, University of Pennsylvania, Philadelphia

Abstract

The initial stages of infection of L(MCN) cell populations with standard Newcastle disease virus (NDVST) were analyzed in an effort to elucidate the steps leading to survival of the cultures and to the indefinite persistence of the infectious process at a low level. Cells were exposed in suspension to NDV at varying multiplicities and the monolayer cultures derived from such cells assayed at intervals for cellular growth rates, percentage of infected cells as determined by immunofluorescence, yields of viral progeny and of interferon, and, on occasion, resistance to superinfection with vesicular stomatitis virus. The percentage of cells calculated to be initially infected on the basis of adsorption data was found to match closely the percentage of immunofluorescent cells resulting from the first infectious cycle (up to 24 hours). Cells initially infected with NDVST produced a mixed progeny of infectious virus (from 15 to 40 pfu/cell) and about 10 times as many non-infectious particles in 24 hours [NDVL(MCN)], but little or no interferon. If all cells were infected the cultures ultimately died. At multiplicities of infection (m) of 2 or less the cultures survived with increasing ease as the percentage of infected cells was reduced. The number of pfu per infected cell was of the above order during the first 3 days; it declined thereafter. Limited secondary spread of the infection was noted by 48 hours and no further cycling was noted thereafter. As m decreased from 2.0 to 0.1 there was an increase in the yields of interferon and the time at which peak titers were reached. Addition of anti-NDV serum 2 hours after infection prevented measurable production of interferon. In contrast, following exposure of cells to NDVL(MCN) at multiplicities ranging from 20.0 to 0.2 (based on infectious virus) all cultures survived, no secondary spread was noted, the number of pfu per infected cells was reduced at the higher multiplicities, and the yields of interferon were similar and maximal by 24 hours and not affected by anti-NDV serum added after an adsorption period of 2 hours. It is concluded that the non-infectious virus particles in the progeny released from NDVST-infected cells induce resistance in remaining cells or, if adsorbed simultaneously with infectious virus, abort the intracellular infectious process. In both instances interferon is produced which may then render additional cells resistant. The non-infectious component is considered an incomplete or defective product of viral replication and not merely thermally inactivated virus. NDVST partially or completely inactivated at 37°C induced neither cellular resistance nor synthesis of interferon. The incomplete viral component behaved in all respects like ultraviolet-inactivated NDVST except that it was significantly more efficient in inducing interferon synthesis. On the basis of the presented data a scheme has been devised and discussed which appears to explain satisfactorily the events which take place on initial infection of L(MCN) cells with NDV and which lead to the persistence of the infectious process.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Viral persistence in colorectal cancer cells infected by Newcastle disease virus;Virology Journal;2014-05-16

2. Persistent Infection of L Cell Cultures by Myxoviruses;Ciba Foundation Symposium - Cellular Biology of Myxovirus Infections;2008-05-30

3. PAPOVAVIRAL PERSISTENT INFECTIONS;MICROBIOL REV;1982

4. INTERFERON AND NK CELLS IN RESISTANCE TO PERSISTENTLY VIRUS-INFECTED CELLS AND TUMORS;Natural Cell-mediated Immunity Against Tumors;1980

5. Mechanisms of persistent infections by cytopathic viruses in tissue culture;Archives of Virology;1979-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3