INDUCED PROTECTION OF ADRENAL CORTEX AGAINST 7,12-DIMETHYLBENZ[a]ANTHRACENE

Author:

Huggins Charles1,Fukunishi Ryo1

Affiliation:

1. From the Ben May Laboratory for Cancer Research, The University of Chicago, Chicago

Abstract

7,12-Dimethylbenz[a]anthracene (7,12-DMBA) exerts adrenocorticolytic effects which set it apart from all other polynuclear aromatic hydrocarbons and aromatic amines which have been investigated. Adrenal damage by this compound appears to be due to its steric and electronic properties together with its unusually high solubility in lipides. Many compounds given prior to 7,12-DMBA induced protection of adrenal. The most efficient inducers of protection are flat condensed aromatics possessing 4 or 5 rings; very small doses of these compounds were required to induce protection. Other compounds devoid of these properties induced protection but large or repeated doses were necessary. All inducers of protection had to be given prior to 7,12-DMBA to prevent adrenal necrosis; when given simultaneously with, or later than, this compound adrenal apoplexy resulted. Protective aromatics and 7,12-DMBA as well induced synthesis of menadione reductase in liver. 3-Methylcholanthrene (3-MC) induced this enzyme in many normal organs including liver, lung, adrenal, and in mammary cancer as well. dl-Ethionine under appropriate conditions of time and dosage eliminated the adrenal protection induced by aromatics and also delayed the induction of menadione reductase while depressing the amount of this enzyme which was synthesized. 7,12-DMBA caused a greatly reduced incorporation of tritium from thymidine-H3 into washed acid-insoluble residue of adrenal. 3-MC given in advance mitigated the drastic effect of 7,12-DMBA on DNA synthesis and increased considerably the amount of tritium which was incorporated. The specific damage to adrenal by 7,12-DMBA is a direct effect on cells. Protection of adrenal is a secondary effect which requires induction of protein synthesis and it results in improvement in synthesis of DNA.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quinone Reductases;Reference Module in Biomedical Sciences;2024

2. Targeting NRF2 to treat cancer;Seminars in Cancer Biology;2021-11

3. The diverse functionality of NQO1 and its roles in redox control;Redox Biology;2021-05

4. The role of natural products in revealing NRF2 function;Natural Product Reports;2020

5. NQO1 in protection against oxidative stress;Current Opinion in Toxicology;2018-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3