The influence of intracellular levels of cyclic nucleotides on cell proliferation and the induction of antibody synthesis.

Author:

Watson J

Abstract

The intracellular ratio of adenosine 3',5'-cyclic monophosphate (cyclic AMP) to guanosine 3',5'-cyclic monophosphate (cyclic GMP) may control the developmental pathway followed by antibody-forming cell (AFC) precursors. The evidence for this is derived from several different types of experiments. First lipopolysaccharide (LPS) which is mitogenic for B lymphocytes, stimulates rapid, transient changes in intracellular levels of cyclic GMP but not cyclic AMP when added to mouse spleen cultures. Cyclic GMP itself stimulates DNA synthesis in these cultures, suggesting that the intracellular changes in cyclic GMP levels are involved in the mitogenic signal delivered by LPS to cells. The absolute amounts of cyclic nucleotides may vary widely in different cells under various conditions, however, the intracellular ratio of cyclic AMP to cyclic GMP is always high in nondividing cells and low in dividing cells. AFC precursors appear to respond to antigen in the absence of T-cell activity by inactivation (1-7). In the response to antigen in the presence of specific T cells, precursor cells proliferate and mature to AFC. Raising intracellular levels of cyclic AMP inhibits cell proliferation and leads to precursor cell inactivation (14, 15). It is suggested that the interaction of antigen with immunoglobulin receptors on the surface of precursors cells leads to the stimulation of adenylate cyclase activity and initiates the inactivation pathway. Since cyclic GMP stimulates immune responses in T-cell-depleted cultures (14, 15) and increasing cyclic GMP levels appear to be involved in the delivery of a mitogenic signal to cells, it is suggested that T-helper cells deliver a signal to precursor cells via the stimulation of guanylate cyclase to initiate the inductive pathway. It is suggested that it is the intracellular ratio of cyclic AMP to cyclic GMP that regulates the fate of precursor cells, not the absolute level of one cyclic nucleotide.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 153 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3