Tumor Necrosis Factor–dependent Segmental Control of MIG Expression by High Endothelial Venules in Inflamed Lymph Nodes Regulates Monocyte Recruitment

Author:

Janatpour Mary J.12,Hudak Susan13,Sathe Manjiri1,Sedgwick Jonathon D.1,McEvoy Leslie M.13

Affiliation:

1. DNAX Research Institute, Inc., Palo Alto, CA 94304

2. Chiron Corporation, Emeryville, CA 94608

3. Corgentech, Inc., Palo Alto, CA 94304

Abstract

Monocytes recruited from the blood are key contributors to the nature of an immune response. While monocyte recruitment in a subset of immunopathologies has been well studied and largely attributed to the chemokine monocyte chemoattractant protein (MCP)-1, mechanisms mediating such recruitment to other sites of inflammation remain elusive. Here, we showed that localized inflammation resulted in an increased binding of monocytes to perifollicular high endothelial venules (HEVs) of lymph nodes draining a local inflammatory site. Quantitative PCR analyses revealed the upregulation of many chemokines in the inflamed lymph node, including MCP-1 and MIG. HEVs did not express detectable levels of MCP-1; however, a subset of HEVs in inflamed lymph nodes in wild-type (but not tumor necrosis factor [TNF] null mice) expressed MIG and this subset of HEVs preferentially supported monocyte binding. Expression of CXCR3, the receptor for MIG, was detected on a small subset of peripheral blood monocytes and on a significant percentage of recruited monocytes. Most importantly, in both ex vivo and in vivo assays, neutralizing anti-MIG antibodies blocked monocyte binding to inflamed lymph node HEVs. Together, these results suggest that the lymph node microenvironment can dictate the nature of molecules expressed on HEV subsets in a TNF-dependent fashion and that inflammation-induced MIG expression by HEVs can mediate monocyte recruitment.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3