Inflammatory signals from photoreceptor modulate pathological retinal angiogenesis via c-Fos

Author:

Sun Ye1ORCID,Lin Zhiqiang2,Liu Chi-Hsiu1,Gong Yan1ORCID,Liegl Raffael1,Fredrick Thomas W.1,Meng Steven S.1ORCID,Burnim Samuel B.1ORCID,Wang Zhongxiao1,Akula James D.1ORCID,Pu William T.23,Chen Jing1,Smith Lois E.H.1ORCID

Affiliation:

1. Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115

2. Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115

3. Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138

Abstract

Pathological neovessels growing into the normally avascular photoreceptors cause vision loss in many eye diseases, such as age-related macular degeneration and macular telangiectasia. Ocular neovascularization is strongly associated with inflammation, but the source of inflammatory signals and the mechanisms by which these signals regulate the disruption of avascular privilege in photoreceptors are unknown. In this study, we found that c-Fos, a master inflammatory regulator, was increased in photoreceptors in a model of pathological blood vessels invading photoreceptors: the very low-density lipoprotein receptor–deficient (Vldlr−/−) mouse. Increased c-Fos induced inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor (TNF), leading to activation of signal transducer and activator of transcription 3 (STAT3) and increased TNFα–induced protein 3 (TNFAIP3) in Vldlr−/− photoreceptors. IL-6 activated the STAT3/vascular endothelial growth factor A (VEGFA) pathway directly, and elevated TNFAIP3 suppressed SOCS3 (suppressor of cytokine signaling 3)–activated STAT3/VEGFA indirectly. Inhibition of c-Fos using photoreceptor-specific AAV (adeno-associated virus)-hRK (human rhodopsin kinase)–sh_c-fos or a chemical inhibitor substantially reduced the pathological neovascularization and rescued visual function in Vldlr−/− mice. These findings suggested that the photoreceptor c-Fos controls blood vessel growth into the normally avascular photoreceptor layer through the inflammatory signal–induced STAT3/VEGFA pathway.

Funder

National Institutes of Health

National Eye Institute

Lowy Medical Research Institute

European Commission

Seventh Framework Programme

American Heart Association

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3