Chemical inhibitors of phagosome-lysosome fusion in cultured macrophages also inhibit saltatory lysosomal movements. A combined microscopic and computer study.

Author:

Hart P D,Young M R,Jordan M M,Perkins W J,Geisow M J

Abstract

The effects on lysosomal movements produced by the weak base ammonium chloride and by a representative polyanion poly-D-glutamic acid (PGA), previously reported to inhibit phagosome-lysosome (P-L) fusion, have been studied in cultured mouse macrophages using direct visual phase-contrast microscopy, a previously described (1, 3, 7) fluorescence assay of fusion, and computer analysis techniques. Treatment of the macrophages with 5-10 mM NH4Cl for 0.5-2 h or with 100 micrograms PGA/ml for 5 d caused a striking inhibition of saltatory lysosomal movements, as well as the expected inhibition of P-L fusion. Two other anionic fusion inhibitors tested, dextran sulphate and suramin, inhibited movements similarly. Removal of the NH4Cl from the cell medium reversed the lysosomal stasis and restored P-L fusion. Computer analyses of changes in lysosomal positions in treated and untreated macrophages during 2, 10, and 30-s intervals, using data from photomicrographs, computer graphics, and quantitative nearest-neighbour techniques developed for this purpose, supported the qualitative visual observation of the inhibition of lysosomal movements by the fusion inhibitors NH4Cl and PGA. Over the chosen intervals, from 80 to 96% of the lysosomes could be paired within 1 micron of each other in the NH4Cl- and PGA-treated cells in comparison with 50-70% in normal cells. The differences between the drug-treated and normal cells were highly significant. In an analogous system, the lysosomal stasis induced by hypertonic sucrose was examined and it was observed that P-L fusion too was inhibited. Both effects were reversible. We conclude that inhibition of P-L fusion and of lysosomal movement are associated. We suggest a causal relationship between these changes, namely, that the lysosomotropic inhibitors of fusion under study produce their effects largely, though perhaps not exclusively, by reducing saltatory lysosomal motion and consequently periphagosomal assembly, rather than directly and independently on P-L contact or on the fusion process itself. The possibility is raised that microtubules may be involved in the effector mechanism of these modulations.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3