Negative Regulation of Phagocytosis in Murine Macrophages by the Src Kinase Family Member, Fgr

Author:

Gresham Hattie D.12,Dale Benjamin M.12,Potter Jeffrey W.3,Chang Peter W.3,Vines Charlotte M.3,Lowell Clifford A.4,Lagenaur Carl F.5,Willman Cheryl L.3

Affiliation:

1. From the Research Service, Albuquerque Veterans Administration Medical Center, Albuquerque, New Mexico 87108

2. Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131

3. Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131

4. Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California 94143

5. Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213

Abstract

Ingestion of opsonized pathogens by professional phagocytes results in the generation and release of microbicidal products that are essential for normal host defense. Because these products can result in significant tissue injury, phagocytosis must be regulated to limit damage to the host while allowing for optimal clearance and destruction of opsonized pathogens. To pursue negative regulation of phagocytosis, we assessed the effect of the Src kinase family member, Fgr, on opsonin-dependent phagocytosis by mouse macrophages. We chose Fgr because it is present in high concentrations in circulating phagocytes but is not essential for Fcγ receptor–mediated ingestion by mouse macrophages. Although expression of Fgr both in a macrophage cell line and in primary macrophages significantly attenuates ingestion mediated by Fcγ receptors and CR3, it does not affect macropinocytosis or receptor-mediated endocytosis. This selective effect of Fgr is independent of its tyrosine kinase function. After Fcγ receptor cross-linking, Fgr becomes associated with the immunoreceptor tyrosine-based inhibition motif (ITIM)–containing receptor, SIRPα (a member of the signal-regulatory protein family, also known as Src homology 2 domain–containing protein tyrosine phosphatase [SHP] substrate 1 [SHPS-1], brain immunoglobulin-like molecule with tyrosine-based activation motifs [BIT], and P84) and potentiates the association of the phosphatase SHP-1 with SIRPα. This association is responsible, at least in part, for decreasing positive signaling essential for optimal phagocytosis. These data demonstrate an important negative regulatory role for this Src kinase family member and suggest that this homeostatic function must be overcome for optimal uptake and clearance of opsonized pathogens.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3