Critical Contribution of Ox40 Ligand to T Helper Cell Type 2 Differentiation in Experimental Leishmaniasis

Author:

Akiba Hisaya12,Miyahira Yasushi3,Atsuta Machiko12,Takeda Kazuyoshi12,Nohara Chiyoko1,Futagawa Toshiro1,Matsuda Hironori1,Aoki Takashi3,Yagita Hideo12,Okumura Ko12

Affiliation:

1. Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan

2. CREST (Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation, Tokyo 101-0062, Japan

3. Department of Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan

Abstract

Infection of inbred mouse strains with Leishmania major is a well characterized model for analysis of T helper (Th)1 and Th2 cell development in vivo. In this study, to address the role of costimulatory molecules CD27, CD30, 4-1BB, and OX40, which belong to the tumor necrosis factor receptor superfamily, in the development of Th1 and Th2 cells in vivo, we administered monoclonal antibody (mAb) against their ligands, CD70, CD30 ligand (L), 4-1BBL, and OX40L, to mice infected with L. major. Whereas anti-CD70, anti-CD30L, and anti–4-1BBL mAb exhibited no effect in either susceptible BALB/c or resistant C57BL/6 mice, the administration of anti-OX40L mAb abrogated progressive disease in BALB/c mice. Flow cytometric analysis indicated that OX40 was expressed on CD4+ T cells and OX40L was expressed on CD11c+ dendritic cells in the popliteal lymph nodes of L. major–infected BALB/c mice. In vitro stimulation of these CD4+ T cells showed that anti-OX40L mAb treatment resulted in substantially reduced production of Th2 cytokines. Moreover, this change in cytokine levels was associated with reduced levels of anti–L. major immunoglobulin (Ig)G1 and serum IgE. These results indicate that anti-OX40L mAb abrogated progressive leishmaniasis in BALB/c mice by suppressing the development of Th2 responses, substantiating a critical role of OX40–OX40L interaction in Th2 development in vivo.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 209 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3