Modulation of Fc receptors of mononuclear phagocytes by immobilized antigen-antibody complexes. Quantitative analysis of the relationship between ligand number and Fc receptor response.

Author:

Michl J,Unkeless J C,Pieczonka M M,Silverstein S C

Abstract

Macrophages plated on surfaces coated with antigen-IgG complexes lose the capacity to bind and ingest IgG-coated particles via their Fc receptors (FcR). Macrophages plated on surfaces containing a similar number of IgG molecules that are not complexed to antigen show little or no decrease in FcR activity. Using a rat monoclonal antibody (2.4G2 IgG) directed against the trypsin-resistant FcR (FcRII) of mouse macrophages we show that the decrease in receptor activity induced by substrate-adherent immune complexes is caused by the physical removal of 60 and 75% of FcRII from the nonadherent membrane surfaces of resident and thioglycollate broth-induced macrophages, respectively. Macrophages maintained on antigen-IgG-coated surfaces for up to 44 h show no recovery in FcRII activity or number, while macrophages on control surfaces exhibit two and threefold increases, respectively, in these parameters. Macrophages maintained for 72 h on antigen-IgG-coated surfaces show a small recovery in FcRII activity, and in the number of FcRII that is accessible to bind 125I-2.4G2 IgG. FcRII modulation, as measured by the binding of 125I-labeled 2.4G2 IgG, is initiated when the number of IgG molecules bound to the substrate is approximately equal to the total number of FcRII on the plasma membranes of all the macrophages on the substrate. FcRII activity and number decrease linearly as the number of substrate-bound IgG molecules increases exponentially, and are maximally reduced when the number of IgG molecules on the substrate is 20-fold greater than the total number of all FcRII on the surfaces of all the macrophages in the culture. Thus there is a stoichiometric relationship between the number of IgG molecules on the substrate and the extent of FcRII modulation.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3