Induction of Fas Ligand Expression by HIV Involves the Interaction of Nef with the T Cell Receptor ζ Chain

Author:

Xu Xiao-Ning1,Laffert Bernd1,Screaton Gavin R.1,Kraft Michael1,Wolf Dietlinde1,Kolanus Waldemar1,Mongkolsapay Juthathip1,McMichael Andrew J.1,Baur Andreas S.1

Affiliation:

1. From the Medical Research Council Human Immunology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom; the Institute of Clinical and Molecular Virology, University of Erlangen/Nürnberg, 91054 Erlangen, Germany; and Genzentrum, Ludwig-Maximilians-Universität München, 81377 München, Germany

Abstract

During HIV/SIV infection, there is widespread programmed cell death in infected and, perhaps more importantly, uninfected cells. Much of this apoptosis is mediated by Fas–Fas ligand (FasL) interactions. Previously we demonstrated in macaques that induction of FasL expression and apoptotic cell death of both CD4+ and CD8+ T cells by SIV is dependent on a functional nef gene. However, the molecular mechanism whereby HIV-1 induces the expression of FasL remained poorly understood. Here we report a direct association of HIV-1 Nef with the ζ chain of the T cell receptor (TCR) complex and the requirement of both proteins for HIV-mediated upregulation of FasL. Expression of FasL through Nef depended upon the integrity of the immunoreceptor tyrosine-based activation motifs (ITAMs) of the TCR ζ chain. Conformation for the importance of ζ for Nef-mediated signaling in T cells came from an independent finding. A single ITAM motif of ζ but not CD3ε was both required and sufficient to promote activation and binding of the Nef-associated kinase (NAK/p62). Our data imply that Nef can form a signaling complex with the TCR, which bypasses the requirement of antigen to initiate T cell activation and subsequently upregulation of FasL expression. Thus, our study may provide critical insights into the molecular mechanism whereby the HIV-1 accessory protein Nef contributes to the pathogenesis of HIV.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3