Affiliation:
1. From the Physiology Program, Harvard School of Public Health, Boston, Massachusetts 02115; the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115; the Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153, Japan; the Department of Medical Biochemistry and Biophysics, Karolinska Institute,
Abstract
Alveolar macrophages (AMs) avidly bind and ingest unopsonized environmental particles and bacteria through scavenger-type receptors (SRs). AMs from mice with a genetic deletion of the major macrophage SR (types AI and AII; SR−/−) showed no decrease in particle binding compared with SR+/+ mice, suggesting that other SRs are involved. To identify these receptors, we generated a monoclonal antibody (mAb), PAL-1, that inhibits hamster AM binding of unopsonized particles (TiO2, Fe2O3, and latex beads; 66 ± 5, 77 ± 2, and 85 ± 2% inhibition, respectively, measured by flow cytometry). This antibody identifies a protein of ∼70 kD on the AM surface (immunoprecipitation) that is expressed by AMs and other macrophages in situ. A cDNA clone encoding the mAb PAL-1–reactive protein isolated by means of COS cell expression was found to be 84 and 77% homologous to mouse and human scavenger receptor MARCO mRNA, respectively. Transfection of COS cells with MARCO cDNA conferred mAb-inhibitable TiO2 binding. Hamster MARCO also mediates AM binding of unopsonized bacteria (67 ± 5 and 47 ± 4% inhibition of Escherichia coli and Staphylococcus aureus binding by mAb PAL-1). A polyclonal antibody to human MARCO identified the expected ∼70-kD band on Western blots of lysates of normal bronchoalveolar lavage (BAL) cells (>90% AMs) and showed strong immunolabeling of human AMs in BAL cytocentrifuge preparations and within lung tissue specimens. In normal mouse AMs, the anti-MARCO mAb ED31 also showed immunoreactivity and inhibited binding of unopsonized particles (e.g., TiO2 ∼40%) and bacteria. The novel function of binding unopsonized environmental dusts and pathogens suggests an important role for MARCO in the lungs' response to inhaled particles.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
198 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献