A Novel Gene Coding for a Fas Apoptosis Inhibitory Molecule (FAIM) Isolated from Inducibly Fas-resistant B Lymphocytes

Author:

Schneider Thomas J.1,Fischer Gavin M.1,Donohoe Terrence J.1,Colarusso Thomas P.11,Rothstein Thomas L.111

Affiliation:

1. From the Department of Microbiology, the Department of Medicine, and the Evans Memorial Department of Clinical Research, Boston University Medical Center, Boston, Massachusetts 02118

Abstract

The sensitivity of primary splenic B cells to Fas-mediated apoptosis is modulated in a receptor-specific fashion. Here we used a differential display strategy to detect cDNAs present in B cells rendered Fas resistant but absent in those rendered Fas sensitive. This led to the cloning and characterization of a novel 1.2-kb gene that encodes a Fas apoptosis inhibitory molecule (FAIM). faim-transfected BAL-17 B lymphoma cells were less sensitive by half or more to Fas-mediated apoptosis than were vector-transfected controls, using Fas ligand–bearing T cells or a cytotoxic anti-Fas antibody to trigger Fas, and this was associated with inhibition of Fas- induced poly-ADP ribose polymerase (PARP) cleavage. In primary B cells, the time course of faim mRNA and FAIM protein expression correlated with the induction of Fas resistance by surface (s)Ig engagement. Thus, FAIM is an inducible effector molecule that mediates Fas resistance produced by sIg engagement in B cells. However, faim is broadly expressed in various tissues and the faim sequence is highly conserved evolutionarily, suggesting that its role extends beyond lymphocyte homeostasis. As FAIM has no significant regions of homology to other gene products that modulate Fas killing, it appears to represent a distinct, new class of antiapoptotic protein.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3