THE PENETRATION OF BACTERIA THROUGH CAPILLARY SPACES

Author:

Mudd Stuart1,Mudd Emily B. H.1

Affiliation:

1. From the Mount Desert Island Biological Laboratory, Salisbury Cove, and the Laboratories of The Rockefeller Institute for Medical Research.

Abstract

The dark-field microscope may be used to observe directly the characteristics of composite films. The liquid phases, one or both of them containing suspended solid particles as test objects (in these experiments bacteria were used), are spread between slide and cover-glass and examined with any desired lenses. The liquid-liquid interfaces appear as bright lines and the solid particles as shining motes. An interfacial kinetic mechanism has been observed in films of all composition studied. The bacteria are transported along the phase boundary lines in a striking and characteristic manner and quite independently of movements in the adjoining organic or aqueous phases. These movements in the interface are interpreted as essentially due, according to the composition of the films, to local inequalities in interfacial surface tension, or to minute currents from mixing of the two phases across and along their boundary line, or to both forces acting together. The bacteria (non-motile in these experiments) reached the interface by brownian movement or currents or shifts in the position of the boundary line. Once in the interface they tended to remain, and accumulated there, in instances where the liquid-liquid interfacial tension was high at least, in higher concentration than in the contiguous phases. Bacteria could, however, escape from the interface in a variety of ways detailed above. With liquids which differ markedly in interfacial tension and miscibility with water, these properties may be correlated with the characteristics of the preparation. With cyclohexane-water films, for instance, (immiscible, interfacial tension high), the boundary was less readily drawn out into projections, the interfacial trapping mechanism was more efficient, and brownian movement of bacteria in the interface was less free than with cyclohexanol-water films (miscible, interfacial tension low). Analysis of the mechanism of the phenomena herein described will be given in the paper following.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3