T cell requirements for the rejection of renal allografts bearing an isolated class I MHC disparity.

Author:

Gracie J A1,Bolton E M1,Porteous C1,Bradley J A1

Affiliation:

1. University Department of Surgery, Western Infirmary, Glasgow, Scotland.

Abstract

This study has examined the cellular and humoral responses underlying the rejection of rat renal allografts bearing an isolated RT1Aa class I MHC disparity. RT1Aa disparate kidneys were rejected promptly by high responder RT1u but not by low responder RT1c recipients (median survival time 10 d and greater than 100 d, respectively). The magnitude and phenotype of the cellular infiltrate were similar in rejecting and nonrejecting RT1Aa disparate kidneys. Paradoxically, graft infiltrating cells and spleen cells from RT1u recipients showed minimal ability to lyse donor strain lymphoblasts in vitro, whereas effector cells from RT1c recipients showed modest levels of cytotoxicity. Injection of RT1u rats with MRC OX8 mAb was highly effective at selectively depleting CD8+ cells from graft recipients but had no effect in prolonging the survival of RT1Aa disparate grafts despite the complete absence of CD8+ cells from the graft infiltrate, which included numerous CD4+ T cells and macrophages. RT1u, but not RT1c, recipients mounted a strong alloantibody response against RT1Aa disparate kidneys. Immune serum obtained from RT1u recipients that had rejected a RT1Aa disparate graft was able, when injected into cyclosporin-treated RT1u recipients, to restore their ability to reject a RT1Aa, but not a third-party RT1c, kidney. These results suggest that CD8+ cells in general and CD8+ cytotoxic effector cells in particular are unnecessary for the rapid rejection of RT1Aa class I disparate kidney grafts by high responder RT1u recipients. By implication, CD4+ T cells alone are sufficient to cause prompt rejection of such grafts and they may do so by providing T cell help for the generation of alloantibody.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3