Specific tolerance induction across a xenogeneic barrier: production of mixed rat/mouse lymphohematopoietic chimeras using a nonlethal preparative regimen.

Author:

Sharabi Y1,Aksentijevich I1,Sundt T M1,Sachs D H1,Sykes M1

Affiliation:

1. Transplantation Biology Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.

Abstract

The development of safe methods for inducing donor-specific tolerance across xenogeneic barriers could potentially relieve the critical shortage of allograft donors that currently limits the applicability of organ transplantation. We report here that such tolerance can be induced in a xenogeneic combination (rat----mouse) using a nonmyeloablative and nonlethal preparative regimen. Successful induction of chimerism and donor-specific transplantation tolerance required pretreatment of recipients with monoclonal antibodies (mAbs) against NK1.1, Thy-1.2, CD4 and CD8, followed by administration of 3 Gy whole body radiation (WBI), 7 Gy thymic irradiation, and infusion of T cell-depleted rat bone marrow cells (BMC). Rat cells appeared among peripheral blood lymphocytes (PBL) of such recipients by 2-3 wk, and rat T cells by 2-5 wk following bone marrow transplantation (BMT). Donor-type rat skin grafts placed 4 mo after BMT were accepted, while simultaneously placed non-donor-type rat skin grafts were promptly rejected. In addition to its clinical potential, the ability to induce donor-specific tolerance across xenogeneic barriers using such a nonlethal preparative regimen provides a valuable model for the study of mechanisms of xenogeneic transplantation tolerance.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3