Lineage relationships and developmental kinetics of immature thymocytes: CD3, CD4, and CD8 acquisition in vivo and in vitro.

Author:

Petrie H T1,Hugo P1,Scollay R1,Shortman K1

Affiliation:

1. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.

Abstract

T lymphocytes develop in the thymus from immunologically naive bone marrow precursors. Based on T cell receptor rearrangement and transcription, and thymic reconstitution potential, we have deduced a developmental sequence among immature thymocytes, before the acquisition of the lineage markers CD3, CD4, and CD8. In the current study, we have followed the ontogenic progression of the latter stages in this sequence, using two different systems: (a) in vivo, by direct injection into the thymus of nonirradiated, congenic recipients; and (b) in vitro, using culture medium without mitogens or cytokines. In vivo, the less mature Pgp-1- interleukin 2 receptor alpha-positive (IL-2R alpha+) CD3-4-8- subset (also heat-stable antigen high) requires 3 d before becoming predominantly IL-2R alpha- CD3lo4+ 8+ typical cortical-type cells, and at least 5 d before the appearance of any mature single-positive cells (CD3hi4+ 8- or CD3hi4-8+). However, these Pgp-1- IL-2R alpha+ precursors do not differentiate further in unstimulated culture. The more mature Pgp-1- IL-2R alpha- CD3-4-8- subset becomes primarily CD3lo4+ 8+ within 1 d after transplantation, and some mature single-positive progeny are evident by day 3. By 5 d, most of these Pgp-1-IL-2R alpha- precursor cells have become CD3hi, and have lost or are downregulating either CD4 or CD8. In culture, these Pgp-1- IL-2R alpha- cells also acquire high levels of CD4 and CD8 within 1 d, and low levels of CD3 by 2 d. However, they do not progress further to mature single positives in vitro, and most of them die by day 3. These experiments directly confirm our previously proposed developmental sequence, and demonstrate the kinetics of T lymphocyte production in a low-stress, steady-state environment.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3